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Abstract

Numerical modeling of convection damping and macrosegregation suppression during solidification of alloys with prominent mushy
zones through the use of tailored magnetic fields is demonstrated here. Macrosegregation leads to commonly observed defects such as
freckles, channels and segregates in cast alloys that severely affect the performance and suitability of the alloy for further applications.
The current work demonstrates the successful use of magnetic fields in suppressing thermosolutal convection and eliminating some of
these defects in solidifying metallic alloys. The computational model presented utilizes volume-averaged governing transport equations
and stabilized finite element techniques to discretize these equations. A finite-dimensional optimization problem, based on the continuum
sensitivity method is considered to design the time history of the imposed magnetic field required to effectively damp convection. The
coefficients that determine this time variation are the main design parameters of this optimization problem. Continuum sensitivity equa-
tions are derived by design-differentiating the governing equations of the direct problem. The cost functional here is given by the square
of the L2 norm of an expression representing the deviation of the volume-averaged velocity corresponding to conditions of convection
less growth. The cost functional minimization process is realized through a non-linear conjugate gradient algorithm that utilizes finite
element solutions of the continuum direct and sensitivity problems. Design of the time history of the imposed magnetic field is high-
lighted through different examples with the main objective being the suppression of convection and macrosegregation during alloy
solidification.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification of most alloys often results in macrosegre-
gation or large scale variations in the concentration of sol-
ute elements. Macrosegregation leads to non-uniform
properties in the alloy that severely deteriorate its perfor-
mance and suitability in many applications. In metallic cast
alloys, macrosegregation manifests itself for example in the
form of defects such as freckles, channels, bleed bands,
centerline segregates and A- and V-segregates. Removal
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of most of these defects either leads to significant material
and monetary losses or render the casting unusable for fur-
ther applications. In the aircraft industry for example,
almost 40% of the directionally solidified single crystal
blades are lost during castings. Thermosolutal buoyancy
forces are the primary cause of macrosegregation in alloys
solidifying in terrestrial gravity conditions. These forces
may be supplemented by thermocapillary or diffusocapil-
lary forces, if surface tension effects are significant, and
shrinkage driven flows. Damping thermosolutal convection
is indispensable for suppressing and minimizing macroseg-
regation in cast alloys.

The role of thermosolutal convection in macrosegre-
gation has been highlighted through experiments and
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Nomenclature

da interfacial area
B magnitude of magnetic field
B magnetic field
DB perturbation in B

{b} design parameters
B Bezier–Bernstein polynomial
C solute concentration
DC difference in maximum and minimum solute

concentration
cp specific heat
c�p average specific heat

C
�

sensitivity solute concentration

C
�

l sensitivity liquid solute concentration
d dendrite arm spacing
D solute diffusivity
e direction cosines
E induced electric field
f mass fraction
F Gradient of cost functional
F mushy zone factor
g gravity constant
G vertical thermal gradient
h enthalpy, convection heat transfer coefficient
H height
I flux term from volume averaging
J electric current density
J cost functional
K permeability
k thermal conductivity
L length, characteristic length
m slope of phase diagram lines
M sensitivity matrix
n normal vector
N size of the design space
p pressure

p
�

sensitivity pressure
r bottom cooling rate
Ra Rayleigh number
S velocity gradients with respect to design vari-

ables
S individual vectors in S

t time
t̂ non-dimensional time
T temperature

T
�

sensitivity temperature
dV averaging volume
v velocity magnitude
v volume-averaged velocity

v
�

sensitivity velocity
W width
x x coordinate
x vector in space
Y field variable

Y
�

sensitivity of field variable
y y coordinate
z z coordinate

Greek symbols

a step size in CG algorithm
b coefficient of expansion
� liquid volume fraction
�
�

sensitivity liquid volume fraction
jp partition coefficient
l liquid viscosity
X physical domain
/ electric potential

/
�

sensitivity electric potential
q density
qe charge density
re electrical conductivity

Subscripts

C solutal
conv convection
e eutectic
f fusion
i initial, index
j index
k particular phase
l liquid
liq liquidus
l0 reference liquid
m melting
max. maximum
min. minimum
o outer, external
0 reference
T thermal
s solid
tot total
1 ambient

Superscripts

J interfacial
k CG iteration counter
T transpose
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numerical simulations starting from Flemings [1], and
Kurz and Fisher [2], to several other researchers. In recent
years, Heinrich and co-workers [3–5], Beckermann et al.
[6,7] and Incropera et al. [8,9], have focussed on the
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simulation of macrosegregation in binary alloys leading to
defects like freckles and channels. Macrosegregation
caused by multicomponent thermosolutal convection has
been simulated in solidifying steel alloys by Beckermann
et al. [10,11] and in Nickel based alloys by Felicelli et al.
[12,13]. Three-dimensional simulations of freckle forma-
tion have also been carried out in recent years by various
researchers [14–16]. Criteria for predicting freckle forma-
tion during directional solidification of alloys have been
derived by some researchers in recent years based on ther-
mal or solutal Rayleigh numbers [17–19]. The dominant
role played by thermosolutal convection in causing macro-
segregation was highlighted in these and several other
works.

Magnetic fields have been extensively used to damp con-
vection in electrically conducting melts. The convection
damping is achieved through the Lorentz force that is pro-
duced by induced currents in the moving fluid interacting
with the magnetic field lines. Magnetic fields have been
extensively used for flow control in crystal growth pro-
cesses involving semiconductor melts to suppress tempera-
ture and concentration fluctuations [20,21]. Ben Hadid
et al. [22,23] analyzed the effects of magnetic field on com-
bined thermal buoyancy and thermocapillary driven
convection in horizontal Bridgman configurations in two-
Box I. Governing equations for solidification of alloys under

r � vðx; tÞ ¼ 0; ðx; tÞ 2 X� ½0; tmax�

q
ovðx; tÞ

ot
þ vðx; tÞr � vðx; tÞ

�ðx; tÞ

� �� �

¼ �rpðx; tÞ þ pðx; tÞ
�ðx; tÞ r�ðx; tÞ �

�l
Kð�Þ vðx; tÞ þ r � ½lðrvðx;

� �ðx; tÞq0g½bTðT ðx; tÞ � T 0Þ þ bCðClðx; tÞ � Cl0Þ�eg þ re

ðx; tÞ 2 X� ½0; tmax�

qðc�p �FÞ oT ðx; tÞ
ot

þ qcplvðx; tÞ � rT ðx; tÞ

¼ r � ½ð�ðx; tÞkl þ ð1� �ðx; tÞÞksÞrT ðx; tÞ� � qS�

ð1� jpÞClðx;
oCðx; tÞ

ot
þ vðx; tÞ � rClðx; tÞ ¼ r � ð�ðx; tÞDlrClðx; tÞÞ; ðx; tÞ

r � ð�ðx; tÞr/ðx; tÞ � vðx; tÞ � BÞ ¼ 0; ðx; tÞ 2 X� ½0; tmax�

where

F ¼
�ðx; tÞS�=½ð1� jpÞClðx; tÞmliq�; 0:0 < � < 1:0

0; � ¼ 1:0 or 0:0

�
S� ¼ ðcpl � cpsÞðT � T eÞ þ hf c�p ¼ �cpl þ ð1� �Þcps

Initial conditions

vðx; 0Þ ¼ 0; T ðx; 0Þ ¼ T i; Cðx; 0Þ ¼ Ci; /ðx; 0Þ ¼ 0; x
and three-dimensions to determine important scaling laws
for Hartmann flows. In [24], Incropera et al. studied the
effects of low magnetic fields on convection and macroseg-
regation during solidification of a metallic alloy and con-
cluded that the intensity of the magnetic field would have
to be sufficiently increased to damp thermosolutal convec-
tion effectively. Sampath and Zabaras [25] have studied the
effects of magnetic fields on combined thermosolutal and
thermocapillary convection during the solidification of
alloys. Sampath and Zabaras [26,27] solved an adjoint
based inverse problem to design the boundary heat flux
during the solidification of metals and alloys in the pres-
ence of magnetic fields. Gunzberger et al. [28] solved a
design problem to determine the optimal magnetic field
required for the suppression of turbulent flow in the melt
during crystal growth processes.

In [29,30], an optimization problem was addressed
by Zabaras and Ganapathysubramanian where the main
objective was to design the time history of the imposed
magnetic field to control convection in solidifying melts
in the presence of a constant magnetic field gradient. How-
ever, while solving such optimization problems, all authors
have considered dilute alloys with negligible mushy zones
and front tracking methods were used to describe the solid
and liquid regions separately.
the influence of magnetic field

ð1Þ

tÞ þ ðrvðx; tÞÞTÞ�

ð��ðx; tÞr/ðx; tÞ þ ðvðx; tÞ � BÞÞ � B;

ð2Þ

tÞ
oCðx; tÞ

ot
; ðx; tÞ 2 X� ½0; tmax� ð3Þ

2 X� ½0; tmax� ð4Þ

ð5Þ

ð6Þ

ð7Þ

2 X ð8Þ
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The current model utilizes volume-averaged governing
transport equations for describing the solidification of an
alloy with large mushy zones under the influence of mag-
netic fields. This model is termed the direct model. The
continuum sensitivity problem, is then derived from the
direct problem by differentiating governing equations with
respect to design variables. To the best of authors knowl-
edge, this is the first time that the continuum sensitivity
method (CSM) has been used for alloy solidification prob-
lems with mushy zones and an optimization problem
attempted taking into account mushy zone permeability
that may be isotropic or anisotropic. Previous attempts at
optimizing the thermal boundary flux to obtain a desired
uniform front growth rate [26,27], or optimizing the value
of the magnetic field [28] or the time history of the magnetic
field gradient to suppress and damp melt convection
[29,30], have all assumed the presence of a sharp interface
separating the solid and liquid into two separate and dis-
tinct zones.

The organization of the paper is as follows. In Section 2,
the underlying mathematical model of the direct problem is
first described. In our mathematical model, we include only
the magnetic field and not the gradient. Therefore, convec-
tion damping occurs as a consequence of Lorentz force
caused by the induced current density. In Section 3, contin-
uum sensitivity equations for mushy zone solidification are
derived through the continuum sensitivity method (CSM)
and the design problem is formulated for obtaining coeffi-
cients that determine the time history of the applied mag-
netic field. Section 4 describes the non-linear conjugate
gradient algorithm used for solving the finite-dimensional
optimization problem. Numerical techniques and compu-
tational methodology used for solving the direct and sensi-
tivity problems are also described briefly in this section. In
Section 5, the direct problem is solved and numerical exam-
ples that involve convection damping during solidification
through the application of constant magnetic fields are dis-
cussed. Both two- and three-dimensional examples are
discussed here. In Section 6, the continuum sensitivity
problem is described using a particular example. Here, sen-
sitivities obtained from CSM are compared with those
obtained from finite difference method (FDM) and supe-
rior properties of the former are highlighted. The design
problem is described after this and examples that involve
the design of the time history of the imposed magnetic field
for effective convection damping and macrosegregation
suppression are considered. This is followed by a section
summarizing conclusions and important observations
made from the current work.

2. Direct problem

The direct problem describing alloy solidification in the
presence of an external magnetic field is first described here.
The mathematical model is based on volume-averaged
macroscopic equations for transport of heat, mass, flow
and solute, and for induced electric potential. Volume-
averaged transport equations for mass, momentum, heat
and solute were derived in [31] from individual microscopic
transport equations and are very similar to continuum
solidification models discussed in [3,6,8]. The governing
equations are derived by volume averaging the microscopic
transport equations of each phase and are listed in Box I.
Some of the key assumptions invoked in the alloy solidifi-
cation model are as follows:

� The liquid is Newtonian and the flow laminar.
� The solid phase is stationary.
� Densities of both phases are equal and constant, except

for the Boussinesq approximation in the momentum
equations.
� Solute in the liquid is completely mixed and diffusion of

solute in the solid is negligible (Scheil rule assumption).
� Pore formation is not modeled in the solidifying alloy

and only the solid and liquid phases are present always.
� Individual phase properties like thermal conductivity

and specific heat are constant and do not vary with
temperature.
� Thermal equilibrium is assumed in the mushy zone, i.e.

Tl = Ts in the mushy zone.

The mushy zone is modeled as a porous medium with
either an isotropic or anisotropic permeability that is a
function of the liquid volume fraction, �. An isotropic per-
meability is modeled using the Kozeny–Karman relation-
ship given by

Kð�Þ ¼ K0�
3

ð1� �Þ2
ð9Þ

where K0 is given by K0 = d2/180, with d being the dendrite
arm spacing. When the permeability is assumed to be
anisotropic, it is expressed in principal growth directions by

Kxð�Þ ¼

1:09� 10�3�3:32d2; � 6 0:65

4:04� 10�6½�=ð1� �Þ�6:7336d2;

0:65 < � 6 0:75

ð�6:49� 10�2 þ 5:43� 10�2

�½�=ð1� �Þ�0:25Þd2; 0:75 < � < 1:0

8>>>>>><
>>>>>>:

ð10Þ

Kyð�Þ ¼ Kxð�Þ ð11Þ

Kzð�Þ ¼

3:75� 10�4�2d2; � 6 0:65

2:05� 10�7½�=ð1� �Þ�10:739d2;

0:65 < � 6 0:75

0:074½logð1� �Þ�1 � 1:49þ 2ð1� �Þ
�0:5ð1� �Þ2�d2; 0:75 < � < 1:0

8>>>>>><
>>>>>>:

ð12Þ

Eqs. (10) and (12) express permeability in directions trans-
verse and parallel to the dendrite growth, respectively.
These relations are listed in [12–14,16] and have been
obtained from experimental data through curve fit and
regression analysis. Closure of the numerical model is
achieved through thermodynamic expressions that take
into account relationships from the phase diagram. For
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all our problems, we use the Scheil rule, given below, to de-
scribe the evolution of liquid volume fraction

� ¼ T � T m

T liq � T m

� � 1
kp�1

ð13Þ

where the liquidus temperature, Tliq, is expressed as,
Tliq = Tm + mliqC, with Tm being the melting temperature
and mliq, the slope of the liquidus line. jp denotes the par-
tition coefficient of the alloy. In the mushy zone, the tem-
perature is directly related to liquid solute concentration
as T = Tm + mliqCl. In the model described here, the Lor-
entz force is the primary force that opposes thermosolutal
buoyancy. Key assumptions invoked while coupling the
magnetohydrodynamic (MHD) equations with the vol-
ume-averaged governing equations are as follows:

� The induced magnetic field is negligible for metallic
alloys considered here.
� Phenomenological cross-effects like galvo-magnetic,

thermomagnetic and thermoelectric effects are negli-
gible.
� The magnetic field is assumed to be non-relativistic and

quasistatic.
� The electric charge density, qe, is negligible for the alloys

considered here.
� The external magnetic field is spatially invariant.

The mathematical model used here to couple MHD
equations with the volume-averaged transport equations
is based on the MHD II model described in [32], where
induced magnetic fields were neglected and the only mag-
netic field was the externally applied one. With the quasi-
stationary assumption of the magnetic field, the induced
electric field, E is expressed by a potential gradient, $/,
since $ � E = 0. The induced electric potential equation
for the liquid phase is derived using the Ohm’s law for a
moving medium. The derivation of the volume-averaged
potential equation is described subsequently.

2.1. Volume-averaged electric potential equation

Motion of an electrically conducting fluid in the pres-
ence of a magnetic field gives rise to Lorentz force, which
acts to oppose the motion of the fluid. The Lorentz force
term, FLorentz, is given by

FLorentz ¼ qeEþ J� Btot ð14Þ

where qe is the electric charge density, E = �$/ the in-
duced electric field, / the induced electric potential and Btot

the magnetic field. The induced electric current density, J,
obeys the Ohm’s law for a moving medium and is given by

J ¼ qevþ reð�r/þ v� BtotÞ ð15Þ
where re is the electrical conductivity and v the velocity
vector. The total magnetic field is given by

B ¼ Bþ b ð16Þ
tot
where B is the external applied field and b the induced field.
The magnetic Reynolds number, Rem, is given by Rem =
l0reVL and denotes the ratio of the induced to the applied
magnetic field. For most liquid metals, Rem	 1, and the
induced magnetic field b is negligible compared to the ap-
plied magnetic field B. Therefore, assuming Btot ’ B is rea-
sonable for most problems considered here. Since qe	 1 in
metals, we can neglect terms qeE and qev from Eqs. (14)
and (15), respectively. Using conservation of electric cur-
rent, J obeys

r � J ¼ 0 ð17Þ
Eqs. (15) and (17) combined together can be re-expressed in
terms of / as

r2/ ¼ r � ðv� BÞ in X� ½0; tmax� ð18Þ
When more than one phase is present, as in solidification of
alloys, the potential equation can be expressed for individ-
ual phases as

r2/k ¼ r � ðvk � BÞ in X� ½0; tmax� ð19Þ
where the subscript k denotes individual phases (solid or
liquid). Eq. (19) is volume-averaged to obtain the gover-
ning equation for electric potential.

hr � ðr/k � vk � BÞi ¼ 0 ð20Þ
where the h i denotes the volume-averaging kernel
1

dV

R
dV ð�Þdv with dV consisting of both solid and liquid

phases.
Using the volume-averaging identities for divergence,

Eq. (20) is simplified as

r � hðr/k � vk � BÞi þ 1

dV

Z
dAk

ðr/k � vk � BÞ � nk da ¼ 0

) r � ðhr/ki � hvk � BiÞ þ 1

redV

Z
dAk

Jk � nk da ¼ 0

ð21Þ

where the second term in Eq. (21) is an interfacial flux term
of the current density Jk denoted by IJ

k . The first term in
Eq. (21) can be split using volume-averaging identities for
gradients and products as

hr/ki ¼ �krh/ki
k þ 1

dV

Z
dV

/̂k � nk da ð22Þ

hvk � Bi ¼ �khvkik � B ð23Þ

where �k is the phase volume fraction. By assuming the
potential to be uniform, the microscopic deviation term,
/̂k, can be neglected. We now make the assumption of
balance of interfacial flux terms between different phases,
i.e.,

P
kIJ

k ¼ 0, for further simplification. By invoking the
assumption of a stationary solid phase, the final volume-
averaged potential equation is

r � ð�lrh/li
l � �lhvlil � BÞ ¼ 0 ð24Þ

With the microscopic deviation term for velocity being
neglected, we have hvlil = vl, where vl is the velocity of
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the liquid phase. If densities of the solid and liquid phases
are assumed to be equal, the volume and mass fraction of
individual phases are equal and the superficial velocity, v,
is given by flvl = �lvl. Also, since the solid is stationary,
the induced potential, /s, in the solid phase is constant
and the induced electric field, Es, responsible for the in-
duced current density, is zero in the solid phase. Therefore,
unlike the liquid phase, the solid phase does not experience
any body forces. The final governing volume-averaged
equation for electric potential is given by

r � ð�r/� v� BÞ ¼ 0 ð25Þ

where / denotes h/lil.
Box I summarizes equations representing the direct

problem of alloy solidification under the influence of a
magnetic field after incorporating all assumptions dis-
cussed in this section.

3. Design problem using tailored magnetic fields

The main objective of the design problem is to create
conditions through the application of tailored magnetic
fields that result in successful damping of thermosolutal
convection and minimization of macrosegregation in the
solidifying alloy. This results in a diffusion dominated
growth regime that leads to a near homogeneous solute
concentration throughout the cast alloy. The definition of
the design problem for solidification can therefore be stated
as:
Box II. Continuum sensitivity equations for alloy solidification

r � v� ¼ 0; ðx; tÞ 2 X� ½0; tmax�

q
o v
�

ot
þ v
� �rv

�
þ v � r v

�

�
� vv � r ��

�2
þ 2vv � r� ��

�3

" #

¼ �r p
� þ p

�

�
r�þ p

�
r �� � p

�2
�
� r�� �l

Kð�Þ v
� � �

�
l

Kð�Þ vþ
� �
�
lK

K2ð

� q0g½�ðbT T
�
þbCC

�
lÞ�eg � q0g½��ðbTðT � T 0Þ þ bCðCl � C

� re½�ðr/
�
�BÞ þ ��ðr/� BÞ þ �ðr/� DBÞ�

þ re½ðv
� �BÞB� ðB � BÞ v�� þ re½ðv � DBÞBþ ðv � BÞDB� 2v

q c�p �
S��

ð1� jpÞðT � T mÞ

� �
o T
�

ot
þ q ðcpl � cpsÞ �

� � S� �
�

ð1� jpÞðT �

"

þ q
S�� T

�

ð1� jpÞðT � T mÞ2
� ðcpl � cpsÞ� T

�

ð1� jpÞðT � T mÞ

" #
oT
ot
þ qcplðv �

¼ r � ½ð�kl þ ð1� �ÞksÞr T
�
� þ r � ½��ðkl � ksÞrT � þ q

ð1�

� qðcpl � cpsÞ T
�

ð1� jpÞCl

oC
ot
; ðx; tÞ 2 X� ½0; tmax�
Find the time history of the external applied magnetic
field B(t) such that the alloy solidification defined by
the initial boundary value problem in Box I proceeds
with negligible convection resulting in diffusion domi-
nated growth conditions.

With the orientation of the applied magnetic field fixed
throughout the solidification process, its magnitude with
time is expressed using Bezier–Bernstein polynomials as
follows:

BðtÞ ¼
XN�1

i¼0

biB
N�1
i ð̂tÞ ð26Þ

where BN�1
i ð̂tÞ denotes the Bezier–Bernstein polynomial

given by

BN�1
i ð̂tÞ ¼

N � 1

i

� �
t̂N�1�ið1� t̂Þi ð27Þ

bi (i = 0,1, . . . ,N � 1) denote constant coefficients that form
the design space and t̂ denotes the non-dimensional time
with t̂ ¼ t=tmax 2 ½0; 1�. The design space is therefore discret-
ized into a finite-dimensional space of size N. The resultant
design problem is therefore reduced to a finite-dimensional
optimization problem. Bezier-curves were previously used
in [33] to represent complex die shapes during die design
problems and capture the effect of small changes in design
variables very well. The function space formed by Bezier–
Bernstein polynomials was therefore deemed sufficient to
capture the time history of the applied magnetic field.
under the influence of magnetic field

ð28Þ

0ð�Þ
�Þ

vþr � ½lðr v
� þðr v

� ÞTÞ�

l0ÞÞ�eg

ðB � DBÞ�; ðx; tÞ 2 X� ½0; tmax� ð29Þ

T mÞ

#
oT
ot

r T
�
þ v
� �rT Þ

S�mliq T
�

jpÞðT � T mÞ2
oC
ot
� qS�

ð1� jpÞCl

o C
�

ot

ð30Þ



o C
�

ot
þ v � rC

�
þ v
� �rCl ¼ v � rðC

�
�C
�

lÞ þ r � ð�DlrC
�

lÞ þ r � ð�
�

DlrClÞ; ðx; tÞ 2 X� ½0; tmax� ð31Þ

r � ð�r/
�
Þ þ r � ð�� r/Þ � r � ðv� �Bþ v� DBÞ ¼ 0; ðx; tÞ 2 X� ½0; tmax� ð32Þ

C
�

l ¼ mliq T
�

ð33Þ

�
� ¼ 1

1� jp

T � T m

T liq � T m

� �2�jp
jp�1 mliqfðT � T mÞC

�
�C T

�
g

ðT liq � T mÞ2
ð34Þ

where

c�p ¼ �cpl þ ð1� �Þcps; S� ¼ ðcpl � cpsÞðT � T eÞ þ hf ; T liq ¼ T m þ mliqC; T ¼ T m þ mliqCl

Initial conditions

v
�ðx; 0Þ ¼ 0; T

�
ðx; 0Þ ¼ 0; C

�
ðx; 0Þ ¼ 0; /

�
ðx; 0Þ ¼ 0; x 2 X ð35Þ
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3.1. Continuum sensitivity method (CSM)

To achieve significant convection damping and suppres-
sion of macrosegregation in a solidifying alloy, the mag-
netic field must be chosen as to effectively oppose
thermosolutal convection that develops during solidifica-
tion. The cost functional is expressed in terms of the vol-
ume-averaged velocity as

J ¼ JðBÞ ¼ JðfbigÞ ¼
1

2

Z tmax

0

Z
X

v � vdXdt ð36Þ

where B denotes the magnitude of the magnetic field. With
the cost functional given by Eq. (36), the objective defined
previously can be restated as finding the optimal magnetic
field, BðtÞ, given by a set of N coefficients, �b0; �b1; . . . ; �bN�1,
such that
Box III. Conjugate gradient algorithm for the optimization pr

Step I. Make an initial guess of fbg0 2 RN defining B(t) a
Step II. Calculate conjugate search direction pk 2 RN .

� Solve the coupled direct problem for v(x, t; {b

sensitivity problem for v
� ðx; t; fbgkÞ, T

�
ðx; t; fbgk

� Calculate J({b}k) and F({b}k) functional defi
tolerance, set {b} = {b}k and stop.

� Set ck = 0, if k = 0; Otherwise ck ¼ FðfbgkÞTðFðfbgkÞ�
Fðfbgk�1ÞTFð

� Define pk, if k = 0, p0 = �F({b}0); Otherwise pk

Step III. Calculate the optimal step size ak given by ak

Mij ¼
R tmax

0

R
X

ov
obi
� ov

obj
dXdt.

Step IV. Update bkþ1
i ¼ bk

i þ akpk; i ¼ 0; . . . ;N � 1.
Step V. Set k = k + 1 and return to Step II.
Jðf�bigÞ 6 JðfbigÞ 8 fbig 2 RN ð37Þ

From the definition of J({bi}) given in Eq. (36), the gradi-
ent of J is given by

F ¼ rbJ ¼ oJ
obi

� �
¼
Z tmax

0

Z
X

v � rbvdXdt ð38Þ

We define another matrix S (S = (S1,S2, . . . ,SN)T) given by

Si ¼
ov

obi
ð39Þ

Using Eq. (39), F is re-expressed as

F ¼
Z tmax

0

Z
X

STvdXdt ð40Þ
oblem

nd set k = 0.

}k), T(x, t; {b}k), C(x, t; {b}k) and /(x, t; {b}k), and the
Þ, C
�
ðx; t; fbgkÞ and /

�
ðx; t; fbgkÞ.

ned by Eqs. (36) and (38); if J ¼ JðfbgkÞ=Jðfbg0Þ 6

Fðfbgk�1ÞÞ
fbgk�1Þ

.

= �F({b}k) + ckpk�1.

¼ � pk T
FðfbgkÞ

pk T
Mpk

. The sensitivity matrix, M, is given by
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The continuum sensitivity method (CSM) is used for
obtaining the continuum sensitivity (CS) equations that
provide the gradient information required in the optimiza-
tion algorithm. If DB represents the perturbation in the
magnitude of the imposed magnetic field, B(t), the per-
turbed direct fields are given by T(x, t;B + DB),
C(x, t;B + DB), v(x, t;B + DB) and /(x, t;B + DB). The
corresponding sensitivity fields are then expressed as
follows:

T ðx; t; Bþ DBÞ ¼ T ðx; t; BÞ þ T
�
ðx; t; B;DBÞ þOðkDBk2Þ

ð41Þ

vðx; t; Bþ DBÞ ¼ vðx; t; BÞ þ v
�ðx; t; B;DBÞ þOðkDBk2Þ

ð42Þ

Cðx; t; Bþ DBÞ ¼ Cðx; t; BÞ þ C
�
ðx; t; B;DBÞ þOðkDBk2Þ

ð43Þ

/ðx; t; Bþ DBÞ ¼ /ðx; t; BÞ þ /
�
ðx; t; B;DBÞ þOðkDBk2Þ

ð44Þ

where the sensitivity temperature, sensitivity concentration,
sensitivity velocity and sensitivity potential are denoted by
T
�
, C
�

, v
�

and /
�

, respectively.Terms second order in DB are
neglected.By taking directional derivatives of the governing
equations described in Box I in the direction of DB and
evaluating them at T(x, t;B), C(x, t;B), /(x, t;B), p(x, t;B)
and v(x, t;B) corresponding to the imposed magnetic field
B(t), we obtain governing equations for the linear sensitiv-
ity solidification problem.These equations are summarized
in Box II with the main unknown variables here being T

�
, C
�

,
p
�
, v
�
, and /

�
.In addition to Eqs.(28)–(32), two more auxiliary

relationships given by Eqs.(33) and (34) express the sensi-
tivity liquid solute concentration, C

�
l, and the sensitivity li-

quid volume fraction, �
�
, respectively in terms of other

known sensitivity variables.Both these equations are de-
rived using closure and phase diagram relationships de-
scribed in Section 2.Gradient based methods are used to
solve the optimization problem.Gradient fields are evalu-
ated from sensitivity fields obtained after solving the con-
tinuum sensitivity problem.Consider any field Y whose
sensitivity, Y

�
, has been obtained after solving the sensitivity

problem for a particular choice of infinitesimally small and
a priori specified perturbations, Dbi,i = 1,2, . . . ,N. Y

�
can be

expressed as

Y
�
ðx; t; b1; . . . ; bN ;Db1; . . . ;DbN Þ ¼

XN

i¼1

oY

obi
Dbi ð45Þ

Therefore, we have

oY

obi
¼ Y
�
ðx; t; b1; b2; . . . ; bN ; 0; 0; . . . ;Dbi; . . . ; 0Þ

Dbi
ð46Þ

The computation of the gradient of any field requires the
solution of N CSM problems. Therefore, the solution of
the design problem requires the sequential solution at each
time step of the direct problem and N linear sensitivity
problems corresponding to each design variable. The pro-
cedure to obtain gradient fields from sensitivity fields is
the same as that described in Section 4.2 of [33], where
the continuum sensitivity method was used for the design
of deformation processes.
4. Computational techniques

A non-linear conjugate gradient algorithm based on the
Polak-Ribiere method used to solve the optimization prob-
lem is summarized in Box III. The algorithm shown here is
nearly identical to that used in [29,30] for an adjoint based
design problem except in the definition of the sensitivity
matrix and inner products, which are similar to those
described in [33] for a CSM-based finite-dimensional opti-
mization problem. For the direct problem, stabilized finite
element methodologies are used to discretize the governing
transport equations of fluid flow, heat and solute. A mod-
ified form of SUPG–PSPG based stabilized finite element
technique for discretizing the fluid flow problem in alloy
solidification systems, previously developed in [34,35], is
used in this work. Thermal and solute species governing
equations are discretized by SUPG based finite element
methods. Supplementary thermodynamic and two-phase
relationships are used to update volume fractions and sol-
ute concentrations in individual phases. The multistep pre-
dictor–corrector scheme is used for thermal and solute
problems, while the Newton–Raphson scheme along with
a global line search method is used for the fluid flow
problem.

The solution of the direct problem is similar to the
numerical scheme described in [34]. Velocity, v, tempera-
ture, T, solute concentration, C and pressure, p fields are
obtained after solving the direct problem and liquid solute
concentration, Cl, and liquid volume fraction fields, � are
obtained from thermodynamic and phase diagram rela-
tionships. At each time step, in an inner iteration loop
the thermal and solutal sub-problems are solved repeatedly
to converge liquid solute concentration and liquid volume
fraction fields. The flow and the induced electric potential
sub-problems are solved only once in a particular time step
with the latter solved after the former. Once the direct
problem is fully solved, the solution of individual sensitiv-
ity problems proceeds. In each sensitivity problem, the sen-
sitivity heat, sensitivity solute, sensitivity flow and
sensitivity potential sub-problems are solved. Solution of
the linear sensitivity sub-problems is much simpler com-
pared to their direct counterparts. At each time step, in
an inner iteration loop, the sensitivity heat and sensitivity
solute sub-problems are solved repeatedly to converge
the sensitivity liquid solute concentration, C

�
l and sensitiv-

ity liquid volume fraction, �
�
, fields. After that, the sensitiv-

ity flow and the sensitivity potential sub-problems are
solved.



Table 1
Important physical parameters for lead–tin alloy

Symbol Value Units

ks 1.855 � 10�2 kW m�1 K�1

kl 1.855 � 10�2 kW m�1 K�1

cs 0.167 kJ kg�1 K�1

cl 0.167 kJ kg�1 K�1

hf 37.6 kJ kg�1

jp 0.31
bT 1.2 � 10�4 K�1

bC 0.515 (kg/kg)�1

qs 1.01 � 104 kg m�3

ql 1.01 � 104 kg m�3

l 2.495 � 10�3 kg m�1 s�1

Te 456.0 K
Tm 600.0 K
g 9.81 m s�2

mliq �2.33 K (wt%�1)
Dl 3 � 10�9 m2 s�1

re 1.5 � 106 Ohm�1 m�1

Table 2
Dimensions (in mm) of the cavity of Example 5.1

H L0 Li t1 t2 tB

157.95 52.31 46.87 2.31 3.12 7.95

Table 3
Properties of the mold material in Example 5.1

q (kg/m3) cpmold
ðkJ=kg KÞ kmold (kW/m K)

7900 0.535 0.018
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5. Numerical examples – direct problem

In this section, examples describing the direct problem
involving constant magnetic fields are first discussed. The
main aim here is to highlight the role of magnetic fields
in damping convection and suppressing macrosegregation
during alloy solidification. Both two- (2D) and three-
dimensional (3D) examples are considered to show the
effectiveness of magnetic fields in damping convection dur-
ing alloy solidification. Due to our emphasis on macroseg-
regation, the overall concentration of the solute is shown
for all examples instead of individual phase concentrations.

5.1. Validation problem for the MHD alloy solidification
model

To validate the MHD based alloy solidification model,
horizontal solidification of a lead–tin alloy in a copper
mold under a constant magnetic field intensity of 0.5 T is
first considered. The composition of the alloy is 19% by
weight tin (solute) and rest lead. Initially, both the mold
and the melt are at 578 K. Heat is removed from the left
wall. The convective heat transfer coefficient and the ambi-
ent temperature are selected as 50 W m�2 K�1 and 286 K,
respectively, here. This problem was previously addressed
by Incropera et al. [24] for two different magnetic field
intensities, 0.5 T and 0.1 T, to demonstrate the effect of
magnetic fields on thermosolutal convection and macroseg-
regation. Fig. 1 shows the domain and boundary condi-
tions for this problem. Neumann boundary conditions
are applied for the concentration of tin and induced electric
potential fields on all boundaries. A magnetic field of 0.5 T
is applied in the positive z direction opposite to that of
gravity. The shaded region denotes the mold and the solid-
ification occurs from the left wall. Some of the important
physical parameters characterizing this problem are given
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Fig. 1. Domain and boundary conditions for the validation problem. o//
on = 0 on all boundaries (where n = x and z).
in Table 1. Dimensions of the cavity and thermal properties
of the mold are given in Tables 2 and 3, respectively. Per-
fect contact between the metal and the mold is assumed
throughout the solidification process. A 66 � 68 mesh con-
sisting of quadrilateral bilinear elements was initially used
for this problem. Fig. 2 shows the temperature, concentra-
tion of tin, volume fraction and velocity fields at time
t = 210 s which is similar to those observed in [24]. Com-
parison of maximum velocity magnitudes are given in
Table 4. The problem was repeated after increasing the
mesh density to 71 � 78. Fig. 3 shows the macrosegrega-
tion patterns at t = 600 s after complete solidification for
both grids indicating a convergence in our numerical
results. It is observed that, in spite of the presence of mag-
netic field, channel formation is not suppressed and signif-
icant macrosegregation occurs due to thermosolutal
convection that is not entirely damped. Therefore, to elim-
inate macrosegregation significantly, increasing the mag-
netic field intensity to an order of 5 T or above, as
recommended in [24], is necessary.

5.2. 2D horizontal solidification of a metal alloy

We now consider convection damping during horizontal
solidification of a lead–10% by weight tin alloy where the



Fig. 2. (a) Isotherms, (b) concentration of tin and (c) liquid volume fraction and velocity fields at t = 210 s for Example 5.1, vmax = 3.89 mm/s.

Table 4
Comparison between maximum velocity magnitudes at two different times

Time (s) vjmaxj (mm/s) calculated here vjmaxj (mm/s) from [24]

170 17.5 15.6
210 3.89 3.58

Fig. 3. Concentration of tin at t = 600 s for (a) 66 � 68 mesh and (b)
71 � 78 mesh.
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Fig. 4. Domain and boundary conditions for the 2D Pb–Sn alloy
solidification problem. C0 = 10% by wt. Sn and T0 = Tliq. o//on = 0 on
all boundaries.
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solute is tin. The magnetic field intensity is increased to 5 T
here and it is applied in the positive z direction, opposite to
the direction in which gravity acts. Fig. 4 shows the domain
and boundary conditions used for simulating this problem.
The mushy zone permeability is assumed to be isotropic
and given by the Kozeny–Karman relationship given in
Eq. (9). The initial temperature (Ti) of the melt is 580 K.
Heat is removed from the left wall and all other walls are
insulated. The convective heat transfer coefficient and the
ambient temperature are selected as 1000 W m�2 K�1 and
298 K, respectively, here. No-slip and no penetration
boundary conditions are assumed for the fluid flow prob-
lem. Neumann boundary conditions are applied for the
tin concentration and induced electric potential fields on
all boundaries. This example is characterized by strong
thermosolutal buoyancy that drives convection and leads
to severe macrosegregation throughout the cavity. A mesh
consisting of 4590 quadrilateral elements was used for this
problem. Fig. 5(a)–(c) and Fig. 6(a)–(c) show the tempera-
ture, concentration of tin (solute), liquid volume fraction
and velocity fields for magnetic field intensities of 0 T
and 5 T, respectively, at t = 120 s. The presence of the mag-
netic field helps in damping out thermosolutal convection
significantly as evident from maximum velocity magnitudes
listed in Table 5 for both cases at few different times. More-
over, macrosegregation that is particularly severe as
observed from Fig. 5(b) is significantly suppressed. This
example is used in Section 6 for an optimization problem
involving the design of the time history of the applied mag-
netic field.

5.3. 2D vertical directional solidification of a metal alloy

In this example, we consider a lead–tin alloy direction-
ally solidifying in a vertical cavity as shown in Fig. 7. The



Fig. 5. (a) Temperature, (b) concentration of tin and (c) liquid volume
fraction and velocity at t = 120 s (no magnetic field) in Example 5.2.

Fig. 6. (a) Temperature, (b) concentration of tin and (c) liquid volume
fraction and velocity at t = 120 s (magnitude of magnetic field = 5 T) in
Example 5.2.

Table 5
Comparison of maximum velocity magnitudes at two different times for
magnetic fields of 0 T and 5 T in Example 5.2

Time (s) vjmaxj (mm/s)
(no magnetic field)

vjmaxj (mm/s)
(magnetic field = 5 T)

40 74.3 0.331
120 96.9 0.382
160 189.3 0.186
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Fig. 7. Domain and boundary conditions for the directional solidification
problem. Uniform vertical thermal gradient, G = 7700 K/m, bottom
cooling rate (oT/ot), r = 0.2 K/s, C0 = 10% by wt. Sn and T0 = Tliq. o//
on = 0 on all boundaries.
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mushy zone permeability is assumed to be anisotropic
with the permeability given by Eqs. (10) and (12). A mag-
netic field intensity of 3.5 T is applied in the x direction.
Fig. 7 shows the domain and boundary conditions for this
particular problem. A uniform vertical temperature gradi-
ent, G, is applied throughout the cavity and the cooling
rate, r, at the bottom of the cavity is constant.
Fig. 8(a)–(d) shows the concentration of tin (solute), liquid
volume fraction and velocity fields at time t = 800 s for
both magnetic field intensities of 0 and 3.5 T. During
directional solidification, channel formation occurs due
to thermosolutal convection as observed in Fig. 8(a) and
(b). This leads to the formation of freckles in the final cast
alloy. The solute concentration in these regions varies
greatly compared to the bulk and results in non-uniform
properties in the final cast alloy. Channel formation is
suppressed through the application of magnetic fields as
observed from Fig. 8(c) and (d). Thermosolutal convec-
tion is suppressed and the solute distribution is more uni-
form here.

5.4. 3D vertical directional solidification of a metal alloy

We now consider convection damping for a three-
dimensional directional solidification of a metallic alloy.
The problem domain along with the boundary conditions
is shown in Fig. 9. No-slip, no penetration conditions for
velocity and Neumann conditions for the induced electric
potential and solute (tin) concentration are assumed on
all faces. All side faces are assumed to be thermally insu-
lated. The mushy zone permeability is assumed to be aniso-
tropic with the permeability given by Eqs. (10)–(12). Like
the previous example, the cavity is characterized by a uni-
form vertical temperature gradient, G, a constant cooling
rate, r, at the bottom face. Figs. 10 and 11 show the con-
centration and liquid volume fraction fields at time



Fig. 8. No magnetic field – (a) concentration of tin, (b) liquid volume fraction and velocity. Magnetic field of 3.5 T – (c) concentration of tin, (d) liquid
volume fraction and velocity.
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Fig. 9. Problem domain for Example 5.4. Uniform vertical thermal
gradient, G = 1000 K/m, bottom cooling rate (oT/ot), r = 0.0167 K/s,
C0 = 10% by wt. Sn and T0 = Tliq. All side faces are thermally insulated.
oC/on = 0 and o//on = 0 on all boundaries (where n = x, y and z).
vx = vy = vz = 0 on all faces.

Fig. 10. (a) Concentration of tin and (b) liquid volume fraction at
t = 800 s (no magnetic field) for Example 5.4.

Fig. 11. (a) Concentration of tin and (b) liquid volume fraction at
t = 800 s (magnetic field = 5 T) for Example 5.4.
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t = 800 s for magnetic fields of 0 and 5 T, respectively. In
the absence of magnetic field, channel formation occurs
in the bulk leading to the formation of freckle defects
where solute concentration differs greatly compared to
the bulk as observed from Fig. 10(a) and (b). Freckles
develop faster and become more prominent after
t = 500 s. The application of a magnetic field suppresses
channel formation by damping out thermosolutal con-
vection throughout the solidification process. This is evi-
dent from Fig. 11(a) and (b). Macrosegregation is
eliminated and solute concentration is nearly uniform
throughout the cavity. This example is also used in Section
6 for demonstrating the design of the time history of
applied magnetic fields for alloy solidification in three
dimensions.

6. Numerical examples – optimization problem

In this section, the comparison of sensitivity fields from
the continuum sensitivity method (CSM) and finite differ-
ence method (FDM) is provided. Next, design problems
are considered where the time history of the imposed mag-
netic field is determined by solving a finite-dimensional
optimization problem.
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6.1. Comparison of sensitivities from CSM and FDM

methods

The CSM equations are derived by differentiating the
governing equations for the direct problem with respect
to design variables and are shown in Box II. CSM valida-
tion is done using the example discussed in Section 5.2 by
comparing sensitivity fields for two different mesh sizes of
4000 and 4590 elements. Sensitivity values remained
unchanged for both of these mesh sizes. Sensitivities
obtained from CSM are then compared with those
obtained from the finite difference method. The reference
magnetic field, B0 is chosen as 2 T, while the perturbation,
DB, is chosen as either 0.05 T or �0.05 T. Sensitivities in
the FD method are obtained by taking the difference
between various field variables from two direct problems
run with magnetic fields, B0 and B0 + DB, respectively.
Figs. 12 and 13 summarize different sensitivity fields for
the CS and FD methods, respectively, with DB being
0.05 T. From these figures, it is evident that both the FD
and CS methods capture sensitivity fields well. However,
sensitivities from FDM appear to be polluted with numer-
ical noise when compared to those obtained from CSM.
The latter is therefore used for obtaining sensitivities in
the optimization problems considered subsequently.
Fig. 12. Sensitivity fields of (a) concentration of tin, (b) horizontal
velocity, (c) vertical velocity and (d) temperature at t = 120 s (continuum
sensitivity method) with B0 = 2 T and DB = 0.05 T.

Fig. 13. Sensitivity fields of (a) concentration of tin, (b) horizontal
velocity, (c) vertical velocity and (d) temperature at t = 120 s (finite
difference method) with B0 = 2 T and DB = 0.05 T.
6.2. Optimization problem for a 2D horizontal solidification

problem

The first optimization considered is the design of time
history of the external magnetic field for convection damp-
ing during the two dimensional horizontal solidification of
a lead–tin alloy that was previously addressed in Section
5.2. This problem is characterized by strong thermosolutal
buoyancy forces and severe convection driven macrosegre-
gation in the solidifying alloy. The optimization problem
was solved using four and five design variables that use
third and fourth degree Bezier–Bernstein curves, respec-
tively. The initial guess is chosen as a magnetic field of
0.4 T constant in time with bi = 0.4. The relative tolerance
(Jk/J0) during the optimization process for terminating the
non-linear CG iterations was chosen as 10�3. The time
interval under consideration is given by t 2 [0,120]. Figs.
14 and 15 show the cost functional variation for both these
cases. Figs. 16 and 17 show the variation of the optimal
magnetic field under the time interval considered here.
The optimal magnetic field is captured well by both design
space discretizations. It is higher in the initial stages to
counter the strong thermosolutal buoyancy force, preva-
lent initially. Under the combined influence of thermosolu-
tal buoyancy and Lorentz forces the convection weakens
with time and the magnetic field decreases with time
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Fig. 15. Cost functional versus CGM iteration for Example 6.2 (five
design variables).
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Fig. 16. Plot of the optimal magnetic field for Example 6.2 (four design
variables).
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Fig. 17. Plot of the optimal magnetic field for Example 6.2 (five design
variables).

Table 6
Comparison of DC at two different times for Example 6.2 with no,
constant and optimal magnetic fields (DC = Cmax � Cmin and number of
design variables = 5)

DC (% Sn) (t = 60 s) DC (% Sn) (t = 120 s)

No magnetic field 13.35 17.57
Magnetic field of 5 T 1.06 1.94
Optimal magnetic field 0.92 1.52
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Fig. 14. Cost functional versus CGM iteration for Example 6.2 (four
design variables).

Fig. 18. (a) Temperature, (b) concentration of tin and (c) liquid volume
fraction and velocity at t = 120 s for Example 6.2 (for the optimal
magnetic field obtained with five design variables).
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accordingly. The magnetic field approaches a final asymp-
totic value, lower than its starting magnitude, towards the
end of the time interval that is required to suppress weaker
thermosolutal convection in the later stages. The Darcy
drag force that appears in the mushy zone during solidifica-
tion contributes to velocity damping in that zone. All these
factors eliminate the need to maintain a constant high field
throughout the solidification process. Table 6 shows the
difference between the maximum and minimum solute con-
centrations, DC, at two different times. Fig. 18(a)–(c) shows
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Fig. 20. Plot of the optimal magnetic field obtained with four design
variables for Example 6.3.

Fig. 21. (a) Concentration of tin and (b) liquid volume fraction at
t = 800 s (optimal time varying magnetic field) for Example 6.3.

Table 7
Comparison of DC at two different times for Example 6.3 with zero,
constant and optimal magnetic fields (DC = Cmax � Cmin and number of
design variables = 4)

DC (% Sn) (t = 400 s) DC (% Sn) (t = 800 s)

No magnetic field 5.97 7.40
Magnetic field of 5 T 0.57 1.78
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different field variables under the influence of the optimal
magnetic field at t = 120 s. From these figures, it is clear
that the application of the optimal magnetic field helps in
damping out thermosolutal convection significantly leading
to a diffusion dominated growth regime. From Fig. 18(b)
and Table 6 it is evident that macrosegregation is sup-
pressed to a large extent and the solute concentration pro-
file in the solidifying alloy is more uniform in the presence
of the optimal field than that observed in Fig. 5(b) in the
absence of any field. In fact, from Table 6, a marginally
higher reduction in the degree of segregation (DC) is
observed for an optimal magnetic field than for a constant
magnetic field.

6.3. Optimization problem for a 3D directional solidification

problem

The second optimization problem considered involves
designing the time history of the applied magnetic field dur-
ing the three-dimensional directional solidification of a
lead–tin alloy addressed previously in Section 5.4. The time
interval considered here is given by t 2 [0, 800] and the
number of design variables is 4 here. The initial guess is
chosen as a magnetic field of 1.5 T constant in time with
bi = 1.5. The relative tolerance during the optimization
process for terminating the non-linear CG iterations was
chosen as 10�3. Fig. 19 shows the cost functional and
Fig. 20 shows the variation of the optimal magnetic field
under the time interval considered. The time variation is
very similar to that observed in the previous example.
The magnitude of the applied field, which is higher in the
initial stages to suppress stronger thermosolutal buoyancy
forces, decreases with time. Towards the end, there is a
marginal increase in magnetic field, but it is lower than
the starting magnitude. This is required to counter the
residual solutal convection that is responsible for freckle
formation and growth at later times. Fig. 21(a) and (b)
shows the solute concentration and liquid volume fraction
fields for the optimal magnetic field. The optimal magnetic
field is successful in suppressing channel formation and
CG Iterations
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Fig. 19. Cost functional versus CG iteration for Example 6.3.

Optimal magnetic field 0.40 1.65
inhibiting macrosegregation that were previously observed
in Fig. 10(a) and (b) in the absence of any magnetic field
and also in Table 7, where DC values at two different times
are tabulated. The need to maintain a constant high mag-
netic field throughout the solidification process is also elim-
inated. Like in the previous example, the margin of
reduction in the degree of segregation (DC) is slightly better
with the optimal magnetic field than with a constant mag-
netic field of 5 T.

7. Conclusions

A numerical study of the effect of magnetic fields on
solidification of metallic alloys with significant mushy
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zones was presented. The direct problem was based on a
single domain volume-averaged model for alloy solidifica-
tion under the influence of magnetic fields. Based on this,
a continuum sensitivity based finite-dimensional optimiza-
tion problem was formulated for designing the time history
of the externally imposed magnetic fields. The main objec-
tive here was to use an optimal magnetic field to suppress
thermosolutal convection and inhibit macrosegregation
during alloy solidification. The orientation of the applied
magnetic field was fixed and only the magnitude was cho-
sen to vary with time. For metallic alloys considered here,
the Lorentz force arising due to the application of magnetic
fields on moving melts is the primary damping force. Once
solidification starts, Darcy drag forces appear in the mushy
zone and they contribute to velocity damping in that zone.
The cost functional minimization was carried out using a
non-linear conjugate gradient method that utilized finite
element solutions of the continuum direct and sensitivity
problems. The magnetic field was tailored so as to capture
variations in thermosolutal convection during solidification
of the alloy. The magnitude of the optimal magnetic field
was higher during the initial stages of solidification and
decreased with time before approaching an asymptotic
value for the 2D example or increasing slightly towards
the end of the time interval considered for the 3D example.
During 3D directional solidification, this increase is neces-
sary to counter the solutal convection that is responsible
for freckle formation and growth at later times. The use
of an optimal magnetic field alleviates the need to use a
constant high magnetic field throughout the solidification
process, which in turn translates into power and energy
savings. Optimization examples in both two and three
dimensions were considered to highlight the efficacy and
dimension independent nature of the design simulator.
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